

Electrode and Membrane Materials for CO₂ Electrolyzers: A Molecular Approach

WBS: 2,3.4.304/2.3.4.305

Apr 6 2023 Ksenia Glusac, ANL

Project Overview: Summary

Electrochemical CO₂ to CH₃OH conversion:

$$CO_2 + H_2O \rightarrow CH_3OH + O_2$$

- -Catalysts for selective CO₂ reduction to CH₃OH
- -Bipolar membranes for desired pH and prevention of CH₃OH crossover.
- -Molecular approach: chemically tunable.

Funding:

DOE/EERE/Bioenergy Technologies
Office

Performance Dates: Jan 1, 2022 - Sep 30, 2024

TRL: 2-4

Participants

Glusac/ANL&UIC

Zapol/ANL

Project Overview: Glusac Group Expertise

Molecular bioinspired electrocatalysis/photocatalysis

Project Overview: Methanol as fuel and chemical

Project Overview: Thermal vs e-Methanol

Thermal Methanol:

Non-renewable 2nd law of TD No CO₂ removal

Project Overview: Thermal vs e-Methanol

e-METHANOL:

Existing plants use a

2-step process

$$3H_2O \xrightarrow{e\text{-chem}} 3H_2 + 3/2O_2 \quad CO_2 + 3H_2 \longrightarrow CH_3OH + H_2O$$

E-METHANOL PROJECTS
IN THE WORLD:

Project Overview: e-Methanol number of steps

Existing plants: 2-step e-Methanol

$$3H_2O \xrightarrow{e-chem} 3H_2 + 3/2O_2$$

$$CO_2 + 3H_2 \longrightarrow CH_3OH + H_2O$$

E-chem is easy

Overall setup is more complicated

More energy used

Our approach: 1-step e-Methanol

$$CO_2 + 2H_2O$$
 e-chem $CH_3OH + 3/2O_2$

Simpler, all in one step

Less energy used

E-chem more challenging

Project Overview: Connection with Consortium

Project Overview: Connection with Consortium

TEA Analysis of two-step and one-step e-methanol production:

Goal: to identify what electrolyzer performance we need to achieve to make a single-step methanol generation economically competitive with a two-step process.

Ling Tao (NREL)

Jenny Huang (NREL)

Approach: Theoretical Background

Too weakly: CO formation

Too strongly: electrode poisoning

Just right: CH₃OH formation

Progress and Perspectives of Electrochemical CO₂ Reduction on Copper in Aqueous Electrolyte Chemical Reviews 2019 119 (12), 7610-7672; DOI: 10.1021/acs.chemrev.8b00705

Approach: Tasks

- Task 1. Carbon electrode functionalization with molecular catalysts (Glusac, Myers, Zapol).
- Task 2. COF-based membranes for H+/OHconduction and prevention of methanol crossover (Glusac, Smith).
- Task 3. CO2R electrolyzer coupled with anodic water oxidation (Smith).

Approach: Tasks

Туре

End Date

Project Milestones:

5 cm² electrolyzer >50 mA/cm² 20% FE

6/30/2023

current >100 mA/cm²

Go-No Go: BPM

potential <1.2 V

12/31/2022

Jan 1 2022

5 cm² electrolyzer >50 mA/cm² 40% FE 9/30/2023

> Sep 30 2024

>200 mA/cm²

25 cm² electrolyzer 60% FE

Task 2: COF-based bipolar membrane work: demonstration of the reverse-bias water dissociation transmembrane potential of <1.2 V at current densities >100 mA/cm ² (ANL/NREL)	12/31/2022	Quarterly Progress Measure
Task 1: Finish the computational screening of bimetallic catalysts. Calculate energy landscape for CO ₂ reduction to C1 products (CH ₃ OH, CO, HCOOH) for at least 15 homonuclear and heterodinuclear complexes (ANL).	03/31/2023	Quarterly Progress Measure
Task 1: Successful synthesis and characterization of at least 3 new electrode materials. The Cobased transition metal complexes will be made and attached to the carbon electrodes. Each electrode material will be made on the 100 mg scale.	06/30/2023	Quarterly Progress Measure
Task 3: Finish CO2R electrolyzer testing using Co-complex/CNT cathode catalyst, a commercial BPM, and a NiFe-based anode catalyst. Target performance: 5 cm ² electrolyzer operating at up to 50 mA/cm2 with >40% methanol Faradaic efficiency (ANL and NREL).	9/30/2023	Annual SMART Milestone
COF-based BPM work: reverse-bias water dissociation transmembrane potential <1.2 V at current densities >100 mA/cm². No Go pivot: stop exploring bipolar membranes and focus on cathode materials.	6/30/2023	Go/No Go
25 cm ² electrolyzer operating at >200 mA/cm ² for at least 100 hrs while maintaining methanol selectivity of 60% Faradaic efficiency.	12/31/2024	End of Project Milestone

Milestone Name/Description

Approach: Experimental Details

3-ELECTRODE MEASUREMENTS

Only the cathodic process monitored. Electrode area: 0.5 cm²
Controlled potential electrolysis
Product detection measured at each potential.

Faradaic efficiency determined from the charge that passes through.

CO₂ ELECTROLYZER

- Both cathodic and anodic (O_2 evolution) processes monitored.
- Electrode area: several cm²
- Controlled current electrolysis

Product detection:

GC for volatile products: CO and H₂

NMR for liquid products: CH₃OH

New Comacrocycles synthesized:

Sreenivasulu Chinnabattigalla (Glusac)

CNT

CF

Molecular catalyst immobilized on the carbon electrode: CH₃OH formation observed.

3-electrode test: **14% CH₃OH FE at -0.94 V vs RHE** (44% is the literature report)

Alice Zheng (Glusac)

Xiaoping Wang (Myers)

At low current densities, CO formation with high FEs. As the current density increases, MeOH formation observed (~10% FE at 100 mA/cm²).

CO₂ electrolyzer

Cathode: 1.1 mg/cm² CoPc/CNT/CF on

GDE; Anode: Ni-foam

Membrane: Fumasep BPM

Catholyte: 0.4 M K₂SO₄

Anolyte: 1 M KOH

Conditions: 60°C, 95% RH, 1 SPLM CO₂

The pH of the electrolyte makes a big difference:

Danielle Henckel (Smith)

Lower the pH, higher the MeOH yield!

Impact

- Materials for CO₂ to CH₃OH electrolyzers
- Co-macrocycle/carbon electrode hybrid catalysts
- 11% CH₃OH Faradaic efficiency achieved
- ~80% CO Faradaic efficiency achieved
- Collaboration with Ling Tao on TEA analysis

Thank You

DOE - Kevin Craig

Ian Rowe

Robert Natelson

ANL - Michael Wang

Amgad Elgowainy

LLNL - Chris Hahn

LBNL - Steve Singer

Eric Sundstrom

NREL - Michael G Resch

Ella Zhou

Hariswaran Sitaraman

Wei Xiong

Jack Ferrell

Gary Grim

Ling Tao

K.C. Neyerlin

Chris Johnson

Kimmy Mazza

Amie Sluiter